Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e27382, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644887

RESUMO

Restriction modification (RM) systems are one of the ubiquitous yet primitive defense responses employed by bacteria and archaea with the primary role of safeguarding themselves against invading bacteriophages. Protection of the host occurs by the cleavage of the invading foreign DNA via restriction endonucleases with concomitant methylation of host DNA with the aid of a methyltransferase counterpart. RM systems have been extensively studied in bacteria, however, in the case of archaea there are limited reports of RM enzymes that are investigated to date owing to their inhospitable growth demands. This review aims to broaden the knowledge about what is known about the diversity of RM systems in archaea and encapsulate the current knowledge on restriction and modification enzymes characterized in archaea so far and the role of RM systems in the milieu of archaeal biology.

2.
Microb Pathog ; 186: 106468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036112

RESUMO

Pseudomonas aeruginosa has emerged as a critical superbug that poses a serious threat to public health. Owing to its virulence and multidrug resistance profiles, the pathogen demands immediate attention for devising alternate intervention strategies. In an attempt to repurpose drugs against P. aeruginosa, this preclinical study was aimed at investigating the antivirulence prospects of albendazole (AbZ), an FDA-approved anti-helminthic drug, recently predicted to disrupt quorum sensing (QS) in Chromobacterium violaceum. AbZ was scrutinized for its quorum quenching (QQ) prospects, effect on bacterial virulence, different motility phenotypes, and biofilm formation in vitro. Additionally, in silico analysis was employed to predict the molecular interactions between AbZ and QS receptors. At sub-inhibitory levels, AbZ demonstrated anti-QS activity and significantly abrogated AHL biosynthesis in P. aeruginosa. Moreover, AbZ significantly downregulated the transcript levels of QS- (lasI/lasR, rhlI/rhlR, and pqsA/pqsR) and QS-dependent virulence (aprA, lasA, lasB, plcH, and toxA) genes in P. aeruginosa. This coincided with reduced hemolysin, alginate, pyocyanin, rhamnolipids, total protease, and elastase production, thereby lowering phenotypic virulence. Molecular docking with AbZ further revealed strong associations and high binding energies with LasR (-8.8 kcal/mol), RhlR (-6.5 kcal/mol), and PqsR (-6.3 kcal/mol) receptors. AbZ also impeded bacterial motility and abolished EPS production, severely compromising pseudomonal biofilm formation. For the first time, AbZ was shown to interfere with QS circuitry and consequently disarming pseudomonal virulence. Hence, AbZ can be exploited for its antivirulence properties against P. aeruginosa.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Biofilmes , Albendazol/farmacologia , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Pseudomonas/microbiologia , Proteínas de Bactérias/metabolismo
3.
Microb Pathog ; 183: 106281, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541553

RESUMO

Metformin (MeT) is an FDA-approved drug with a myriad of health benefits. Besides being used as an anti-diabetic drug, MeT is also effective against various cancers, liver-, cardiovascular-, and renal diseases. This study was undertaken to examine its unique potential as an anti-virulence drug against an opportunistic bacterial pathogen, Pseudomonas aeruginosa. Due to the menace of multidrug resistance in pathogenic microorganisms, many novel or repurposed drugs with anti-virulence prospects are emerging as next-generation therapies with the aim to overshadow the application of existing antimicrobial regimens. The quorum sensing (QS) mechanisms of P. aeruginosa are an attractive drug target for attenuating bacterial virulence. In this context, the anti-QS potential of MeT was scrutinized using biosensor assays. MeT was comprehensively evaluated for its effects on different motility phenotypes, virulence factor production (phenotypic and genotypic expression) along with biofilm development in P. aeruginosa in vitro. At sub-lethal concentrations, MeT displayed prolific quorum quenching (QQ) ability and remarkably inhibited AHL biosynthesis in P. aeruginosa. Moreover, MeT (1/8 MIC) effectively downregulated the expression levels of various QS- and virulence genes in P. aeruginosa, which coincided with a notable reduction in the levels of alginate, hemolysin, pyocyanin, pyochelin, elastase, and protease production. In silico analysis through molecular docking also predicted strong associations between MeT and QS receptors of P. aeruginosa. MeT also compromised the motility phenotypes and successfully abrogated biofilm formation by inhibiting EPS production in P. aeruginosa. Hence, MeT may be repurposed as an anti-virulence drug against P. aeruginosa in clinical settings.


Assuntos
Metformina , Pseudomonas aeruginosa , Simulação de Acoplamento Molecular , Metformina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Virulência/genética , Biofilmes , Percepção de Quorum , Fatores de Virulência/metabolismo
4.
Front Microbiol ; 14: 1126750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007530

RESUMO

DNA methylation events mediated by orphan methyltransferases modulate various cellular processes like replication, repair and transcription. Bacteria and archaea also harbor DNA methyltransferases that are part of restriction-modification systems, which serve to protect the host genome from being cleaved by the cognate restriction enzyme. While DNA methylation has been exhaustively investigated in bacteria it remains poorly understood in archaea. Picrophilus torridus is a euryarchaeon that can thrive under conditions of extremely low pH (0.7), and thus far no reports have been published regarding DNA methylation in this extremophile. This study reports the first experimentation examining DNA methylation in P. torridus. We find the genome to carry methylated adenine (m6A) but not methylated cytosine (m5C) residues. The m6A modification is absent at GATC sites, indicating the absence of an active Dam methylase even though the dam gene has been annotated in the genome sequence. Two other methylases have also been annotated in the P. torridus genome sequence. One of these is a part of a Type I restriction-modification system. Considering that all Type I modification methylases characterized to date target adenine residues, the modification methylase of this Type I system has been examined. The genes encoding the S subunit (that is responsible for DNA recognition) and M subunit (that is responsible for DNA methylation) have been cloned and the recombinant protein purified from E.coli, and regions involved in M-S interactions have been identified. The M.PtoI enzyme harbors all the motifs that typify Type I modification methylases, and displays robust adenine methylation in in vitro assays under a variety of conditions. Interestingly, magnesium is essential for enzyme activity. The enzyme displays substrate inhibition at higher concentrations of AdoMet. Mutational analyses reveal that Motif I plays a role in AdoMet binding, and Motif IV is critical for methylation activity. The data presented here lays the foundation for further research in the area of DNA methylation and restriction-modification research in this most unusual microorganism.

6.
Environ Microbiol ; 24(10): 4547-4560, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35974453

RESUMO

Just when the world started to adapt to the 'new normal' amid the coronavirus disease 19 (COVID-19) pandemic, the world is witnessing the wrath of another viral disease, the monkeypox virus (MPXV). The virus is endemic to African countries, where several outbreaks have been reported in the past. However, the present cases have been reported in non-endemic countries worldwide. Although MPX is considered to be a self-limiting disease, recent reports on its incidence have proved otherwise. The 2022 multi-country MPX outbreak has drawn the attention of global surveillance organizations and epidemiologists to trace its origin; however, there are existing gaps regarding the animal reservoirs, biological implications, and management of MPX. In view of the recent events, the World Health Organization (WHO) has also declared the ongoing MPX outbreak a global health emergency. Hence, the geographically expanding MPXV poses a significant threat to human health and public safety. In this review, the latest insights into the biology of MPXV have been provided by discussing its biological implications on human health, changing epidemiological footprint, and presently available intervention strategies. This review also sheds light on the existing lacunas and possible reasons that may have been responsible for the ongoing MPX outbreak.


Assuntos
COVID-19 , Mpox , Animais , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Mpox/epidemiologia , Monkeypox virus/genética , Pandemias
7.
Front Microbiol ; 13: 1073419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687601

RESUMO

The monkeypox virus (MPXV) has become a major threat due to the increasing global caseload and the ongoing multi-country outbreak in non-endemic territories. Due to limited research in this avenue and the lack of intervention strategies, the present study was aimed to virtually screen bioactive phytochemicals against envelope proteins of MPXV via rigorous computational approaches. Molecular docking, molecular dynamic (MD) simulations, and MM/PBSA analysis were used to investigate the binding affinity of 12 phytochemicals against three envelope proteins of MPXV, viz., D13, A26, and H3. Silibinin, oleanolic acid, and ursolic acid were computationally identified as potential phytochemicals that showed strong binding affinity toward all the tested structural proteins of MPXV through molecular docking. The stability of the docked complexes was also confirmed by MD simulations and MM/PBSA calculations. Results from the iMODS server also complemented the findings from molecular docking and MD simulations. ADME analysis also computationally confirmed the drug-like properties of the phytochemicals, thereby asserting their suitability for consumption. Hence, this study envisions the candidature of bioactive phytochemicals as promising inhibitors against the envelope proteins of the MPXV, serving as template molecules that could further be experimentally evaluated for their efficacy against monkeypox.

8.
PLoS One ; 16(8): e0255826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358261

RESUMO

Secretory proteins are important for microbial adaptation and survival in a particular environment. Till date, experimental secretomes have been reported for a few archaea. In this study, we have identified the experimental secretome of Picrophilous torridus and evaluated the efficacy of various signal peptide predictors (SPPs) in identifying signal peptides (SPs) in its experimental secretome. Liquid chromatography mass spectrometric (LC MS) analysis was performed for three independent P. torridus secretome samples and only those proteins which were common in the three experiments were selected for further analysis. Thus, 30 proteins were finally included in this study. Of these, 10 proteins were identified as hypothetical/uncharacterized proteins. Gene Ontology, KEGG and STRING analyses revealed that majority of the sercreted proteins and/or their interacting partners were involved in different metabolic pathways. Also, a few proteins like malate dehydrogenase (Q6L0C3) were multi-functional involved in different metabolic pathways like carbon metabolism, microbial metabolism in diverse environments, biosynthesis of antibiotics, etc. Multi-functionality of the secreted proteins reflects an important aspect of thermoacidophilic adaptation of P. torridus which has the smallest genome (1.5 Mbp) among nonparasitic aerobic microbes. SPPs like, PRED-SIGNAL, SignalP 5.0, PRED-TAT and LipoP 1.0 identified SPs in only a few secreted proteins. This suggests that either these SPPs were insufficient, or N-terminal SPs were absent in majority of the secreted proteins, or there might be alternative mechanisms of protein translocation in P. torridus.


Assuntos
Archaea , Cromatografia Líquida , Sinais Direcionadores de Proteínas , Proteoma
9.
PLoS Pathog ; 16(5): e1008190, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413071

RESUMO

DNA replication protein Cdc45 is an integral part of the eukaryotic replicative helicase whose other components are the Mcm2-7 core, and GINS. We identified a PIP box motif in Leishmania donovani Cdc45. This motif is typically linked to interaction with the eukaryotic clamp proliferating cell nuclear antigen (PCNA). The homotrimeric PCNA can potentially bind upto three different proteins simultaneously via a loop region present in each monomer. Multiple binding partners have been identified from among the replication machinery in other eukaryotes, and the concerted /sequential binding of these partners are central to the fidelity of the replication process. Though conserved in Cdc45 across Leishmania species and Trypanosoma cruzi, the PIP box is absent in Trypanosoma brucei Cdc45. Here we investigate the possibility of Cdc45-PCNA interaction and the role of such an interaction in the in vivo context. Having confirmed the importance of Cdc45 in Leishmania DNA replication we establish that Cdc45 and PCNA interact stably in whole cell extracts, also interacting with each other directly in vitro. The interaction is mediated via the Cdc45 PIP box. This PIP box is essential for Leishmania survival. The importance of the Cdc45 PIP box is also examined in Schizosaccharomyces pombe, and it is found to be essential for cell survival here as well. Our results implicate a role for the Leishmania Cdc45 PIP box in recruiting or stabilizing PCNA on chromatin. The Cdc45-PCNA interaction might help tether PCNA and associated replicative DNA polymerase to the DNA template, thus facilitating replication fork elongation. Though multiple replication proteins that associate with PCNA have been identified in other eukaryotes, this is the first report demonstrating a direct interaction between Cdc45 and PCNA, and while our analysis suggests the interaction may not occur in human cells, it indicates that it may not be confined to trypanosomatids.


Assuntos
Leishmania donovani/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromatina/genética , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Leishmania donovani/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Nucleotidiltransferases/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Análise de Sequência de Proteína/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...